Proper NMEA 2000 Installation IBEX 2012 Session 813

Part I
Physical Installation
Dave Morschhauser, Mystic Valley Communications

Pete Braffitt, Gemeco

Overview

- What is NMEA 2000?
- What are its physical characteristics and limits?
- What makes a good NMEA 2000 network?
- What makes a good NMEA 2000 network fail?

NMEA 2000

- Marine specific network for navigation, control, and monitoring
- CAN based, similar to J1939
- Uses industrial quality cabling originally developed for DeviceNET
- Certified products, based on standard certification tool

NMEA 2000 Centification

- First certification program applicable to recreational marine electronic products
- Over 400 products certified to date
- Purpose: ensure products communicate cooperatively (plug and play)
- Based on common certification tool
- Cabling components are also approved

NMEA 2000

Typical Tee

MALE

 Backbone Connection

FEMALE Backbone
Connection

Drop Connection to device (FEMALE)- Accepts drop cable.

NMEA 2000

- Single backbone cable snakes throughout the vessel
- No active network infrastructure to fail
- Standardized message structure and format
- oth generic and system specific messages
- Links vessel systems together
- engines, navigation, power distribution, water \& waste, etc.

NMEA 2000 = Vescel Database

What can you do with NMEA 2000?

Physical Construction

- Building Blocks
- Characteristics
- Power Availability
- Other considerations

NMEA 2000 Building Blocks

Termination Resistors

Backbone \& Drop Cables

NMEA 2000 Building Blocks

Mini Backbone w/ Micro Drop

Field Installable Connectors

NMEA 2000 Characteristics

Overall:

- Capacity - 250 K bits-per-second
- Interface operatingrange - 9 to 15 volts
- Legical network identities - 252
- Minimum node separation - 0 meters
- Maximum bridged backbones - 10

NMEA 2000 Chamacteristics

Each backbone:

- Length - 200 meters
- 100 meters when using light cable
- Connected products -50
- Drop cable
- 6 meters per drop
- 78 meters total of all drops
- Power - limited by cable size and the number of power insertion points

NMEA 2000 Terminology

Cable Construction

Product Power Sources

Cable Types

Style

Connectors
Max Length
Capacity
Signal Wire Gage
Power Wire Gage

Light
Micro
100 meters
3 amp*
24 AWG

22 AWG

Mid
Micro/Mini
200 meters
4/8 amp*
20 AWG

16 AWG

* Maximum powerper backbone segment

NMEA 2000 Backbone

NMEA 2000 Backbone

Power Sources

- Battery (nominally 12.0 VDC)
- Allowed voltage drop = 1.5 VDC
- Typical power supply (13.8 VDC)
\rightarrow Allowed voltage drop $=3.0 \mathrm{VDC}$
- Maximum power supply (15 VDC)
- Maximum allowed voltage drop = 5.0 VDC

Other Considerations

- Products may be added to or removed from the backbone while operational
- No daisy-chaining ensures backbone remains intact when removing equipment
- Two terminators required, one at each end of the backbone

Making the Right Selections

Network Design Drivers

- Network power distribution
- Segment voltage drop limit
- Add power insertions points as needed
- Network topology
- Keep it pure

Network Voltage Drop

- Straightforward application of Ohm's Law

$$
E=I \times R
$$

where

$\mathrm{E}=$ voltage drop
$\mathrm{I}=$ circuit current
$\mathrm{R}=$ wire resistance

Network Voltage Drop

- Wire resistance

R = $2 \times$ Length x Power Pair Resistance / 100

- Network current

$$
I=\text { LEN } \times 0.050 \mathrm{amp}
$$

- All together

$$
\begin{aligned}
& E=0.1 \times L E N \times L \times 0.057 \text { (Light) } \\
& E=0.1 \times \text { LEN } \times L \times 0.016 \text { (Mid } / \text { Heavy) }
\end{aligned}
$$

Estimated Length - Light

Example Network

Example Summary

- Total load = 10 LEN
- Backbone length = 13 meters
- Using light cable
\Rightarrow Power pair resistance $=0.057 \Omega /$ meter

$$
\begin{gathered}
E=0.1 \times 10 \times 13 \times 0.057 \\
E=0.74 \text { Volts }
\end{gathered}
$$

Estimated Length - Light

Network Layout

- 'Trunk and Drop’ Topology
- Determine location for each product
- Determine path for trunk/backbone that:
\Rightarrow Passes within 6 meters of each product - Total of all drops <78 meters
- Determine number and location of power insertion points

Network Layout

Layout Issues

- Multiple connections in confined spaces
- Sailboat masts \& powerboat towers
- Gateways to other protocols
- Multiple backbone configurations

Multiple Connections in Confined Spaces

- Multi-tap tee is used just like multiple tees
- Multi-drop splitter has some limitations

Multi-tap Prop

Termination
Resistor

Max length of each drop must be reduced by the length of the drop cable betw en the Tee and the multi-tap

Sailboat Masts

- Most masts are greater than 6 Meters
- Backbone termination at the top of the mast
- In-Line termination resistors are used
- Must be within 6 meters of last device
- Some manufacturers have a built-in termination resistors on cables >6 meters

Gateways

NMEA 2000 GPS information is sent to VHF radio for DSC broadcast

DSC VHF

NMEA 2000 0183 Gateway

Gateways

J1939 data is converted and transmitted on the NMEA 2000 Network

Proprietary
Gateway

NMEA 2000 Network Bridge

- Connect two networks
- > 50 nodes
- Backbone > 200 meters
- Drops > 78 meters

Useful For:

- Separate mast backbone from main
- Separate critical equipment
- Port/stbd redundancy

Power Insertion

- How many insertion points?
- Common reference point
- Connect shield to RF ground only once
- Each leg has only one power source consecutive legs not connected
- Risk of harmonics between power supplies
- Risk of cumulative voltage drop exceeding common mode offset limits

Power Insertion

Power Insertion Building Blocks

Testing

Testing Checklist

Loose connections
Voltage fluctuations \& data errors

- Voltage consistent and > 9 VDC at all tees

Correct termination

- Approximately 60Ω across data pair when power off
No sustained error rate

Testing Checklist

50 connected products or less
Drops 6 meters or less
Total drops 78 meters or less
Network 200 meters or less
All power tap leads powered

Plug and Play Dimitation

- Layout and power planning rules result in products communicating non-destructively
- Product configuration ensures data displayed is data intended
- Manufacturer configurability may vary
- New Label and Configuration messages will unify methods in use

Acknowledgements and Contact Information

Photos courtesy of Airmar, Actisense, Garmin, LTW, Maretron, Molex, Turck
Diagrams courtesy NMEA

Contact Information:

David Morschhauser
dave@netsavvy.com

http://www.nmea2000solutions.com

